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Abstract: Bisphenol A (BPA) is an endocrine-disrupting chemical that affects lipid metabolism and
contributes to non-alcoholic fatty liver disease (NAFLD). The mechanism of BPA exposure in hepatic
lipid accumulation and its potential effect on NAFLD remain unclear. This study investigated
the effect of BPA-exposure-induced hepatic lipid deposition on the pathology of NAFLD and its
underlying mechanism in vitro and in vivo. BPA increased intracellular reactive oxygen species (ROS)
levels, and promoted fatty acid uptake through upregulation of a free fatty acid uptake transporter,
cluster of differentiation 36 (CD36), in HUH-7 cells. Additionally, C57BL/6 mice administered a
high-fat/high-cholesterol/high-cholic acid diet (HFCCD) and BPA (50 mg/kg body weight) for
8 weeks developed a steatohepatitis-like phenotype, characterized by alpha-smooth muscle actin
(α-SMA, an indicator of hepatic fibrosis) and cleaved caspase 3 (an indicator of apoptosis) in hepatic
tissue; moreover, they had a higher oxidative stress index of 8-hydroxydeoxyguanosine (8-OHdG) in
liver tissue compared to the control group. Treatment with ROS scavenger n-acetylcysteine (NAC)
ameliorated BPA-mediated HFCCD-induced lipid accumulation and steatohepatitis in the livers of
treated mice. Our study indicates that BPA acts synergistically to increase hepatic lipid uptake and
promote NAFLD development by stimulating ROS-induced CD36 overexpression.

Keywords: bisphenol A; reactive oxygen species; endocrine-disrupting chemical; CD36; non-alcoholic
fatty liver disease; fatty acid uptake

1. Introduction

Non-alcoholic fatty liver disease (NAFLD), the most prevalent chronic liver disease,
is characterized by abnormal lipid metabolism [1]. The main causes of NAFLD include
poor nutrition and lack of exercise; however, environmental factors may promote obesity
and, consequently, the occurrence of NAFLD [2]. Abnormal macrophage infiltration and
the associated inflammation can cause fatty liver to develop into irreversible fibrosis, and
life-threatening cirrhosis and may lead to hepatocellular carcinoma [3,4]. Homeostasis
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of hepatic lipids is maintained by hepatocyte uptake and de novo synthesis of free fatty
acids (FFAs) [5]. An imbalance between the acquisition and oxidation of FFAs can result in
fatty liver or steatosis [6]. Once acquired, FFAs are esterified and stored in hepatocytes as
triglycerides (TGs). Although TGs are not intrinsically hepatotoxic, abnormal processing
of FFAs by hepatocytes activates resident and infiltrating macrophages through toll-like
receptor 4 pathways to initiate a pro-inflammatory cascade and promote the development
of NAFLD in mice [7].

Bisphenol A (BPA) is a plasticizer that has long been used in the manufacture of poly-
carbonate and epoxy resins. BPA has been reported to exhibit estrogenic properties in the
reproductive system of female rats [8]. The United States Food and Drug Administration
and the European Food Safety Authority have determined that human exposure to BPA
should be kept below 50 µg/kg/day. The link between BPA and NAFLD has been reported
in several studies [9,10]. For example, BPA can promote lipid accumulation in hepato-
cytes [11] and increase intracellular TG content in hepatic cells [12]. Chronic exposure to
BPA aggravates the development of NAFLD and, in addition to a direct effect of BPA on de
novo adipogenesis, the polarization of M1 Kupffer cells is involved in BPA-induced hepatic
lipid accumulation [13]. Shimpi et al. found that BPA administration in pregnant CD-1
mice induced Nrf2 expression and recruitment to the sterol regulatory element binding
protein 1c (Srebp-1c) promoter, resulting in hepatic lipid deposition [14]. In addition, BPA
can act as an E2 (17β-estradiol) mimetic compound by linking to ERα receptors, leading to
the increased expression of glucose transporter (GLUT)-4 and glucose uptake [15]. BPA
exacerbated hepatic steatosis in OVX mice, which was mediated, in part, by chronic endo-
plasmic reticulum (ER) stress and the transforming growth factor (TGF)-β1 pathway [16].
The HNF1b/PPARγ pathway is involved in gestational BPA-exposure-induced NAFLD in
male offspring mice [17]. However, the pathophysiology of NAFLD remains unclear, and
further studies are needed to elucidate the effect of BPA on NAFLD progression.

The abnormal hepatic uptake of lipids under pathological conditions may lead to an
excessive accumulation of FFAs and TGs in the liver, causing cytotoxicity and resulting in
NAFLD [18]. Endogenous FFAs and nutrients can be internalized by scavenger receptors
(SRs). SRs of class A1 (SR-A1) can bind to oxidized low-density lipoproteins (LDLs) and
increase their intracellular uptake [19]. SRs of class B1 (SR-B1) are plasma membrane choles-
terol sensors with a high affinity for high-density lipoprotein (HDL) cholesterol. Apart
from HDL levels, SR-B1 mediates the bidirectional flux of phospholipids and cholesterol
between lipoproteins and cell plasma membranes [20]. Cluster of differentiation 36 (CD36)
is an SR that facilitates the transport of various lipids, including long-chain fatty acids,
phospholipids, and oxidized LDLs [21]. CD36 plays an important role in mediating the
production of reactive oxygen species (ROS), regulating the uptake of hepatic fatty acids,
and the storage of TGs. The superabundant accumulation of lipids in hepatocytes can
cause the oxidative capacity of metabolism to be exceeded, leading to oxidative stress and
activation of the TGF-β signaling pathway in liver fibrogenesis; CD36 may participate in
this process [22].

In previous reports, the administration of BPA (2.4 µg/kg/day) increased ROS levels
in rat livers, decreased antioxidant enzyme activity, and induced chronic inflammation and
DNA damage in hepatic tissue [23,24]. In both cell and animal experiments, BPA induced
cell toxicity via ROS-initiated ER stress regulated by the eukaryotic initiation factor 2α
(eIF2α) and C/EBP-homologous protein (CHOP) pathways [25]. Although ER stress and
ROS have been associated with NAFLD, the degree of their contribution to oxidative stress
is unclear.

A previous study reported that HepG2 cells and primary hepatocytes treated with
the ROS inducer H2O2 showed higher levels of lipid accumulation compared to untreated
cells [26]. However, it is still unclear whether BPA exposure can promote the progression
of NAFLD by increasing ROS-induced fatty acid uptake. The present study aimed to
investigate whether BPA coupled with a HFCCD promotes the development of fatty liver
by enhancing ROS production and lipid accumulation in hepatocytes.
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2. Materials and Methods
2.1. Chemical Reagents and Cell Line

BPA, bovine serum albumin (BSA), sodium oleate (OA), sodium palmitate (PA),
n-acetylcysteine (NAC), and phosphate-buffered saline (PBS) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). BODIPY FL lactosylceramide (LacCer) complexed to BSA
was purchased from Thermo Fisher Scientific (Waltham, MA, USA). The antibodies used
included anti-CD36 (GeneTex, Irvine, CA, USA), anti-α-SMA (GeneTex), anti-α-tubulin
(GeneTex), anti-collagen I (GeneTex), anti-CHOP (Cell Signaling Technology, Danvers, MA,
USA), anti-cleaved caspase-3 (Cell Signaling Technology), anti-SR-A1 (Abcam, Cambridge,
UK), and anti-SR-B1 (Novus Biologicals, Littleton, CO, USA).

A human hepatoma HUH-7 cell line was purchased from the Japanese Collection of
Research Bioresources Cell Bank (Osaka, Japan). HUH-7 cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM), supplemented with 10% fetal bovine serum (FBS,
Sigma-Aldrich) and a 1% mixture of penicillin G, streptomycin, and amphotericin B at
37 ◦C in a 5% CO2 incubator.

2.2. Cell Viability Assay

Cell viability was performed using an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide, Sigma-Aldrich) assay. Cells (2 × 104) were seeded onto 96-well plates in 0.1 mL
growth medium and incubated for 24 h. After exposure to BPA (0, 10, 100, 200, and 400 µM)
or BPA plus FFAs (a long-chain fatty acid mixture of OA and palmitate 1:1, 0.5 mM), the
cells were treated with MTT; they were incubated at 37 ◦C for 4 h, the growth medium
was removed, and the MTT crystals were dissolved with 1 mL dimethyl sulfoxide (DMSO).
Aliquots (100 µL) of the resulting solution were transferred to 96-well plates and optical
density was detected at 570 nm within 20 min using a microplate spectrophotometer reader.
Cell viability was calculated as a ratio of the optical density for a BPA treatment group
divided by that of a vehicle control group.

2.3. Intracellular TG Levels and Lipid Staining

We used FFAs at a concentration of 0.5 mM (OA/palmitate, 1:1 equimolar mixture)
to induce fat-overloading in cells [27]. After exposure to BPA or BPA plus FFAs for 24 h,
cells were washed twice with PBS, fixed with 3.7% formaldehyde in PBS for 30 min, and
washed twice with PBS. Intracellular TGs were stained with 0.35% Oil Red O powder
(Sigma-Aldrich) in isopropyl alcohol (Sigma-Aldrich) for 30 min. Excess stain was removed
by washing with 70% isopropyl alcohol and PBS. The stained lipid droplets were dissolved
in isopropyl alcohol containing 4% Nonidet P-40 (Sigma-Aldrich) and quantified at 510 nm
on a Synergy HT microplate reader (Biotek, Winooski, VT).

Intracellular lipid content was measured using an AdipoRed assay (Lonza, Allendale,
NJ) according to the manufacturer’s instructions. Cells were incubated with 3 mM NAC for
1 h before BPA exposure for 24 h. The stained cells were washed with water, and observed
under a fluorescence microscope (Leica DMi8, Leica Biosystems, Wetzlar, Germany). Images
were recorded for five different fields of observation and analyzed using ImageJ 1.43u
(National Institutes of Health, Bethesda, MD, USA).

2.4. Determination of Intracellular Fatty Acid Uptake

To determine fatty acid uptake, we used a fluorescence-labeled long-chain fatty acid
probe, BODIPY FL LacCer complexed to BSA (Thermo Fisher Scientific), co-incubated
with BPA (0–100 µM) for 6 h. Intracellular uptake of the probe was determined using flow
cytometry (BD Biosciences, Franklin Lakes, NJ, USA) and analyzed using FlowJo software
(Tree Star, San Carlos, CA, USA).

2.5. Measurement of Intracellular ROS

Free radical levels were determined using a DCFDA (2′, 7′-dichlorofluorescin diacetate)
assay (Abcam). Cells (2× 104) were seeded onto a 96-well plate in 0.1 mL of growth medium
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and incubated for 24 h. Preceding the experiment, the culture medium was removed, and
the cells were washed three times with PBS. Cells were incubated for 45 min in Hank’s
balanced salt solution (HBSS) containing DCFDA, washed twice, and treated with BPA or
BPA plus FFAs for 6 h. Fluorescence was monitored at a 488 nm excitation and a 535 nm
emission wavelength using a microplate spectrophotometer reader. Intracellular levels of
ROS were determined according to the fluorescence intensity.

2.6. Western Blotting and Immunofluorescence

Cells were lysed in lysis buffer (25 mM Tris-HCl (pH 7.6), 150 mM NaCl, 1% NP-
40, 1% sodium deoxycholate, 0.1% SDS, and protease and phosphatase inhibitors). The
concentration of lysate protein was quantified using a Bio-Rad protein assay (Bio-Rad
Laboratories, Hercules, CA, USA) and normalized for loading. Proteins were separated in
8% and 12% SDS-PAGE gels and transferred to a PVDF membrane. After 1 h, the PVDF
membrane was blocked with 5% BSA in TBS/TWEEN 20 (TBST) buffer and incubated
in 5% BSA/TBST overnight at 4 ◦C with the primary antibody. The next day, secondary
antibody anti-rabbit IgG-HRP (1:5000) or anti-mouse IgG-HRP (1:5000) was used to confirm
the primary antibody. The specific proteins were visualized using a chemiluminescence
HRP substrate (MilliporeSigma, Bedford, MA, USA) and each band was quantified using a
luminescence image analyzer (LAS-4000 mini, Fujifilm Life Sciences, Tokyo, Japan).

2.7. RNA Extraction and Reverse Transcription–Quantitative Polymerase Chain Reaction
(RT-qPCR)

Total RNA was extracted using an RNeasy mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. cDNA was synthesized using a High-Capacity
cDNA Reverse Transcriptase Kit (Applied Biosystems, Foster City, CA, USA). The primer
sequences for each gene were as follows: SR-A1 (forward: 5′-TTTGATGCTCGCTCAATGAC-3′; reverse:
5′-TTGAAGGGAAGGGCTGTTTT-3′), SR-B1 (forward: 5′-GGCCTATTCTGAATCCCTGA-3′; reverse:
5′-CTGGCTCACGGTGTCCTC-3′), CD36 (forward: 5′-TCCCAAGCTCAAGTGAATCTC-3′; reverse:
5′-ATGCCAGTTGAATGCCTACC-3′), and GAPDH (forward: 5′-AGCCACATCGCTCAGACAC-
3′; reverse: 5′-GCCCAATACGACCAAATCC-3′). The transcript levels of CD36, SR-A1, and
SR-B1 were quantified with RT-qPCR using the cDNA as a template in a StepOne Plus
system (Applied Biosystems) with universal probes (Roche, Basel, Switzerland). The
relative expression of each mRNA was calculated according to 2−∆∆Ct with GAPDH as the
internal control.

2.8. Animals and Experimental Design

Eight-week-old male C57BL/6 mice (18–20 g) were purchased from the Taiwan Na-
tional Laboratory Animal Center and National Applied Research Laboratories (NARLabs,
Taipei, Taiwan). All surgeries were performed under isoflurane anesthesia. All experimen-
tal procedures were approved by the Institutional Animal Care and Use Committee of the
China Medical University (CMUIACUC-2018-169-2). After 1 week of acclimation, the initial
body weight of each mouse was recorded. The mice were randomly assigned to groups
(n = 6 per group) according to diet: normal diet (ND, 10% kcal fat), HFCCD (50% kcal fat,
1.25% cholesterol, 0.25% cholic acid) [28], HFCCD supplemented with 50 µg/kg/day BPA
(BPA + HFCCD), and BPA + HFCCD + NAC (1 mg/mL NAC dissolved in drinking water).
Individual body weight and food intake were measured weekly. No mortalities or side
effects were noted during the experimental period. After 8 weeks, mice were euthanized
using CO2 after fasting for 12 h overnight, and blood and tissue samples were collected.
The tissue samples, liver, spleen, and adipose tissue, were weighed on ice immediately after
removal and stored at –80 ◦C. Blood glucose was measured using an Accu-Chek Aviva
glucometer (Accu-Chek Advantage, Roche Diagnostic, Mannheim, Germany).
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2.9. Staining for Fibrosis in Hepatic Tissue

Liver tissues were fixed in 10% neutral-buffered formalin and embedded in paraffin
to determine hepatic fibrosis. The tissues were cut into 8-µm sections and placed on
slides, followed by staining with hematoxylin and eosin (H&E), Oil Red O, and Masson’s
trichrome (Leica Biosystems). For IHC staining, the slides were fixed overnight in 4%
paraformaldehyde and PBS and embedded in paraffin. Sections were deparaffinized,
immersed in hydrogen peroxide for 30 min, blocked in PBS containing 5% normal goat
serum for 1 h at room temperature, incubated overnight at 4 ◦C with primary antibody
anti-collagen I, and incubated with a secondary antibody conjugated to biotin for 1 h at
room temperature. The slides used streptavidin-conjugated HRP with diaminobenzidine
(DAB; Sigma-Aldrich) as a substrate and were counterstained with hematoxylin. Images
were recorded using a fluorescence microscope (Olympus, Tokyo, Japan).

2.10. Biochemical Assays

Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase, TG, and
total cholesterol were measured using a FUSI DRI-CHEM SLIDE kit with a FUSI DRI-
CHEM 4000 analyzer (Fujifilm Life Sciences). Hepatic TG and total cholesterol levels were
determined using a Randox kit (Randox laboratories, Kearneysville, WV, USA) according to
the manufacturer’s instructions. Plasma insulin levels were determined using a Mercodia
kit (Mercodia, Winston-Salem, NC, USA). Hepatic 8-hydroxydeoxyguanosine (8-OHdG)
levels were measured using an 8-OHdG ELISA Kit (Wuhan Fine Biotech, Wuhan, China).

2.11. Statistical Analysis

Data are presented as the mean± standard deviation (SD) of at least three independent
experiments. Data were analyzed using a Student’s t-test or one-way analysis of variance.
Statistical significance was set at p < 0.05.

3. Results
3.1. BPA Treatment Induced Cell Death and Increased Intracellular ROS Production

We first determined the effect of BPA exposure on cell viability and intracellular ROS
production. The viability of HUH-7 cells decreased significantly with exposure to BPA at
concentrations of 200 and 400 µM (Figure 1a). Intracellular ROS production in HUH-7 cells
increased in a dose-dependent manner. (Figure 1b). These results indicate that exposure to
BPA increases ROS production, leading to cell death.
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ROS levels were determined according to fluorescence intensity. The boxplots present the median
(central horizontal line), 25th and 75th quartiles (upper and lower limits of the box), and the max-
imum and minimum range values (error bars). The results are expressed as the mean ± SD of six
independent experiments. * p < 0.05 vs. control (without BPA) group.

3.2. BPA Treatment Enhanced Accumulation and Uptake of Lipid Droplets

We next assessed the effects of BPA on hepatic lipid accumulation and fatty acid
uptake. Oil Red O staining revealed that BPA plus FFA exposure increased intracellular
lipid accumulation in HUH-7 cells in a BPA-dose-dependent manner (Figure 2a). The
fluorescence lipid-labeling experiments showed that exposure to 10 µM BPA for 6 h in-
creased intracellular fatty acid uptake in HUH-7 cells (Figure 2b). Therefore, BPA exposure
increased fatty acid uptake and intracellular lipid accumulation.
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Figure 2. BPA increases hepatic lipid accumulation and fatty acid uptake: (a) Cells were treated
with different doses of BPA plus FFAs (0.5 mM). Lipid droplets were stained using Oil Red O.
The quantity of dye extracted from the stained cells was measured using spectrophotometry (be-
low); (b) fatty acid uptake was determined using flow cytometry after exposure to BPA, in the
absence or presence of LacCer, for 6 h. The histogram shows the mean of the fluorescence inten-
sity results (below). The results are expressed as the mean ± SD of six independent experiments.
* p < 0.05 vs. control (without BPA) group.

3.3. N-Acetylcysteine (NAC) Suppresses BPA-Induced Fatty Acid Uptake and Lipid Accumulation

We blocked intracellular free radical production with NAC to evaluate the role of ROS
in the BPA-induced uptake and intracellular accumulation of lipid droplets. NAC prevented
BPA-induced ROS production (Figure 3a) and, consequently, reduced BPA-induced lipid
accumulation (Figure 3b). The effect of BPA exposure on intracellular fatty acid uptake was
confirmed with flow cytometry using fluorescence-labeled lipids (Figure 3c,d).
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NAC (3 mM) for 45 min, before being loaded with the indicated concentrations of BPA for 6 h.
Intracellular ROS levels were determined based on fluorescence intensity; (b) cells were treated with
BPA after pretreatment with FFAs (0.5 mM) or NAC (3 mM). The accumulation of lipid droplets was
assessed using AdipoRed staining; (c) fatty acid uptake was determined using flow cytometry after
exposure to BPA (50 µM) for 6 h, in the absence or presence of NAC pretreatment; (d) the mean of
the fluorescence intensity results (bottom right). The results are expressed as the mean ± SD of six
independent experiments. * p < 0.05 vs. control (without BPA and NAC) group.

3.4. BPA Induced Fatty Acid Uptake by Modulating CD36 Expression

BPA exposure caused a significant increase in the mRNA and protein expression levels
of CD36, but did not affect the expression of SR-A1 or SR-B1 (Figure 4a,b and Figure
S1a,b). We assessed whether NAC could prevent BPA-induced ROS production and ER
stress. Results showed that the expression of CHOP decreased in cells pretreated with NAC
(Figure 4c and Figure S2a,b). In addition, NAC pretreatment attenuated the BPA-induced
expression of CD36 and CCAAT-enhancer-binding protein α (C/EBPα). These results
confirm the direct effect of BPA-induced ROS production on intracellular fatty acid uptake.
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RT-qPCR and immunoblotting, respectively. (c) To determine whether BPA exposure increases CD36
expression by increasing ROS production, cells were pretreated with or without NAC (3 mM) for 1 h.
The protein expression levels of CD36, C/EBPα, and CHOP were determined using immunoblotting.
Protein expression levels were normalized to α-tubulin. Data are shown as the mean ± SD of three
independent experiments. * p < 0.05 vs. vehicle control group.

3.5. BPA Enhanced Hepatic Pathological Progression in Mice

We investigated the effect of BPA exposure on the progression of NAFLD in mice
administered a high-fat diet. The average daily food and water intake of mice in the
ND, HFCCD, BPA + HFCCD, and NAC + BPA + HFCCD groups were 2.9, 2.6, 2.4, and
2.6 g, and 4.6, 4.3, 4.2, and 4.3 mL, respectively. The liver and spleen weights, as well
as their proportion of the body weight, were higher in the BPA + HFCCD group than in
the NAC + BPA + HFCCD group (Table 1). The plasma levels of ALT, insulin, and total
cholesterol, as well as the total cholesterol content of the liver, were significantly higher in
the BPA + HFCCD group than in the NAC + BPA + HFCCD group (Table 2). According
to the level of 8-OHdG (an indicator of oxidative DNA damage) in the liver tissue, NAC
acted as an antioxidant and prevented liver damage caused by BPA-induced oxidative
stress (Table 2). Furthermore, the livers of the BPA + HFCCD group had a paler color
and showed inflammation (H&E staining), hepatosteatosis (Masson’s trichrome staining),
hepatic lipid accumulation (Oil red O staining), and liver fibrosis (collagen I) (Figure 5a).
These histological features were eliminated by treatment with NAC. The levels of CHOP
(Figure 5b and Figure S3a) and CD36 (Figure 5c and Figure S3b) were significantly higher in
liver tissue after BPA exposure and were attenuated by NAC treatment. We also determined
the level of cleaved caspase 3, which would increase during the progression of NAFLD and
eventually lead to liver fibrosis. Cleaved caspase 3 levels were significantly upregulated by
BPA and downregulated by NAC (Figure 5d and Figure S3d). α-SMA (a fibrosis marker)
levels were increased by BPA and ameliorated by NAC treatment (Figure 5d and Figure
S3c). These results suggest that BPA-mediated HFCCD promotes hepatic pathological
progression, resulting from ROS-induced free fatty acid uptake and lipid accumulation.

Table 1. Effects of bisphenol A (BPA) on the growth characteristics of mice administered a high-
fat/high-cholesterol/high-cholic-acid diet (HFCCD).

ND HFCCD BPA + HFCCD NAC + BPA +
HFCCD

Initial body wt (g) 24.0 ± 1.3 23.6 ± 0.6 24.0 ± 1.7 24.0 ± 0.5
Body wt after 4

weeks of the HFCCD
diet (g)

27.2 ± 1.2 b 27.2 ± 0.9 b 29.5 ± 1.8 a 26.2 ± 0.5 b

Final body wt (g) 28.7 ± 2 b 28.8 ± 1.3 b 25.9 ± 0.4 a 28.1 ± 1.6 b

Liver wt (g) 1.046 ± 0.027 c 1.301 ± 0.073 b 1.549 ± 0.135 a 1.403 ± 0.091 b

Liver wt/
body wt (%) 3.665 ± 0.239 c 4.539 ± 0.416 b 6.004 ± 0.434 a 4.997 ± 0.224 b

Spleen wt (g) 0.077 ± 0.006 c 0.099 ± 0.005 b 0.117 ± 0.002 a 0.098 ± 0.010 b

Spleen wt/
body wt (%) 0.268 ± 0.023 c 0.346 ± 0.028 b 0.452 ± 0.016 a 0.350 ± 0.052 b

Epididymal fat wt (g) 0.751 ± 0.089 0.795 ± 0.075 0.864 ± 0.271 0.662 ± 0.091
Epididymal fat wt/

body wt (%) 2.646 ± 0.464 2.761 ± 0.178 3.353 ± 1.062 2.351 ± 0.239

Brown fat wt (g) 0.119 ± 0.019 a 0.112 ± 0.009 a 0.078 ± 0.016 b 0.108 ± 0.009 a

Brown fat wt/
body wt (%) 0.415 ± 0.065 a 0.390 ± 0.028 a 0.302 ± 0.028 b 0.381 ± 0.072 a

Data are presented as the mean ± SD; a,b,c p < 0.05.
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Table 2. Effects of BPA on blood and hepatic biochemical parameters in mice administered an HFCCD.

ND HFCCD BPA + HFCCD NAC + BPA
+ HFCCD

Serum
ALT (U/L) 26.20 ± 4.21 b 63.40 ± 15.82 a 93.80 ± 34.58 a 52.60 ± 11.90 a

Triglycerides
(mg/dL) 69.4 ± 7.83 a 19.20 ± 4.32 b 42.00 ± 12.14 a 73.40 ± 32.21 a

Total cholesterol
(mg/dL) 134.40 ± 13.83 b 164.40 ± 27.93 b 280.20 ± 35.72 a 131.20 ± 16.96 b

Blood glucose
(mg/dL) 152.67 ± 33.63 148.00 ± 5.93 155.00 ± 18.81 143.17 ± 7.60

Insulin (ng/mL) 0.177 ± 0.081 c 0.418 ± 0.13 b 0.651 ± 0.205 a 0.374 ± 0.091 b

HOMA 1.421 ± 0.453 c 3.466 ± 1.023 b 5.717 ± 2.169 a 3.027 ± 0.774 b

Liver
Triglycerides

(mg/g of tissue) 43.17 ± 9.66 57.36 ± 12.52 55.44 ± 10.40 47.01 ± 8.06

Total cholesterol
(mg/g of tissue) 6.12 ± 0.74 c 51.74 ± 10.18 b 70.50 ± 5.44 a 50.8 ± 10.81 b

8-OHdG (ng/g
of tissue) 0.577 ± 0.135 c 1.158 ± 0.148 b 2.207±0.219 a 1.224 ± 0.281 b

Data are presented as the mean ± SD; a,b,c p < 0.05.
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Protein expression levels were normalized to α-tubulin. Data are shown as the mean ± SD of three
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4. Discussion

Some recent studies have highlighted the link between NAFLD and endocrine-disruptive
chemicals, such as BPA. BPA can produce hepatosteatosis in human hepatocytes by upreg-
ulating the endocannabinoid system [29]. Furthermore, BPA plays a role in the onset and
progression of NAFLD through its pleiotropic action on key pathophysiological factors [30].
The mechanism of action of BPA on the induction and progression of NAFLD remains
unclear. Therefore, the present study used long-chain fatty acids to investigate the effect of
BPA in exacerbating NAFLD. Our in vitro experiments indicated that BPA increased fatty
acid uptake and lipid accumulation by enhancing C/EBPα and CD36 protein levels as a
result of increased ROS production. Moreover, the in vivo study revealed that blocking
the generation of ROS attenuated the effects of BPA on NAFLD progression. These results
suggest that BPA and a HFCCD can stimulate the accumulation of lipids in hepatocytes,
induce ROS production, and promote the progression of NAFLD. The presence of oxidative
stress has been associated with NAFLD/non-alcoholic steatohepatitis (NASH) [31,32]. BPA
reportedly promotes the generation of intracellular peroxides and mitochondrial superox-
ide, the risk of cardiovascular diseases [33], and the progression of diabetes, obesity, and
cancer [34–36].

Carchia et al. reported that BPA exposure caused a time-dependent decrease in mito-
chondrial membrane potential and increased cellular ROS levels, leading to the induction
of cell apoptosis [37]. In this study, BPA exposure dramatically decreased cell viability
(Figure 1a) and increased ROS generation in HUH-7 cells (Figure 1b). Free fatty acids are
major mediators of hepatic lipid deposition. Free fatty acid uptake and lipid accumulation
in hepatocytes were significantly increased after BPA exposure (Figure 2a,b), which sug-
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gests that BPA exposure may contribute to NAFLD progression through BPA-mediated
free fatty acid uptake and lipid accumulation.

NAFLD is a complex disease caused by both genetic and environmental factors, e.g.,
endocrine-disrupting chemicals (EDCs); however, a comprehensive understanding of the
independent mechanisms of NAFLD pathogenesis remains lacking. Exposure to various
EDCs, such as BPA, has been associated with hepatic lipid accumulation and metabolic
disorders [38]. Some studies have linked BPA-induced oxidative stress to the promotion
of NASH and hepatocellular carcinoma (HCC) [10,39,40]. BPA exposure increases the
binding of Nrf2 to a putative antioxidant-response-element consensus sequence in the
Srebp-1c promoter and increases fatty acid and lipid production [14]. In the present
study, we observed significant cellular damage after BPA exposure in vitro (Figure 1a)
and in vivo (Figure 5d). NAC pretreatment attenuated the adverse effects induced by
BPA (e.g., cytotoxicity and ROS production) both in vitro and in vivo (Figures 3 and 5).
8-OHdG is a useful biomarker for oxidative DNA damage and has been reported as a
feature of carcinogenesis in several studies [41,42]. The concentration of oxidative stress
index 8-OHdG in the liver tissue of the BPA + HFCCD group was higher than that of the
NAC + BPA + HFCCD group. The inhibitory action of NAC attenuated the tissue damage
resulting from BPA-induced ROS production. These results suggest that BPA mediates
free-fatty-acid-induced hepatosteatosis through the production of ROS.

Seo et al. [26] demonstrated that ROS production could increase the intracellular
uptake of glucose and cholesterol. SRs, such as CD36, SR-A1, and SR-B1, are known to
participate in the uptake and efflux of cholesterol, and contribute to lipid accumulation and
metabolic dysfunction in conditions of excessive fat supply [43]. ER stress responses play a
critical role in the CD36-mediated uptake of oxidized LDLs in macrophages [44]. We found,
in the in vitro experiment, that BPA induced ROS production which, in turn, enhanced
CD36 expression and fatty acid uptake. NAC is a commonly used antioxidant that can
effectively inhibit ROS reactivity. In preclinical models of NAFLD, NAC blocked hepatic
lipid accumulation, which indicates that NAC can regulate fatty acid scavenger molecule
CD36 and transcriptional factors, such as Srebp-1c [45]. In this study, NAC pretreatment
attenuated the effects of BPA-induced ER stress as well as the upregulation of CD36, which
is responsible for the increase in fatty acid uptake (Figures 4c and 5c). Collectively, these
findings demonstrate that BPA-induced ROS production and the scavenging mechanisms
of CD36 overexpression could lead to hepatic lipid accumulation.

Most food containers (e.g., canned food and plastic or paper packaging) contain BPA,
and its transfer to food from these containers has been reported, which stokes legitimate
health concerns [46–48]. Based on the highest observed degree of BPA migration from
acidic- and fatty-food containers, daily BPA exposure in humans is predicted to be <1 µg/kg
body weight/day [47,48]. The US Environmental Protection Agency reported that the
lowest observed adverse effect level (LOAEL) for oral exposure to BPA in rodents is
50 mg/kg/day [49]. Although daily exposure in humans is lower than the LOAEL reported
for rodents, we selected 50 µg/kg/day BPA in the present study based on the concentration
ranges reported in other animal experiments [50,51].

We combined a HFCCD with BPA in the present study to simulate a high-fat human
diet coupled with environmental toxicant exposure. A more serious stage than NAFLD
called nonalcoholic steatohepatitis (NASH) can cause severe liver damage and liver failure,
leading to rapid body-weight loss [52]. In this study, we observed a relative increase in liver
and spleen weight, but a significant decrease in the body weight of the mice fed BPA+HFCCD
for 8 weeks. A high-fat/high-cholesterol diet has been reported to increase liver weight, as
well as fat infiltration, triglycerides, and total cholesterol in the liver, compared with an
ND and HFD diet [53]. Furthermore, it also has been indicated that administration of a
methionine-choline-deficient (MCD) diet to mice induces a rapid and severe steatohepatitis
state. Compared to the mice fed the control diet for the same duration, mice lost body
weight after receiving the MCD diet [54]. We found that the markers of hepatosteatosis
(Masson’s trichrome staining), as well as collagen I expression (IHC staining), were higher



Toxics 2022, 10, 208 13 of 16

in the BPA + HFCCD group compared with the other groups (Figure 5a). The protein
expression of cleaved caspase 3 was also higher in the BPA + HFCCD group, which implies
that exposure to BPA and a high-fat diet may increase the progression of NAFLD and,
eventually, lead to liver fibrosis. NAC downregulated the protein expression of CHOP,
CD36 (Figure 3b,c), and cleaved caspase 3 (Figure 5d). These results suggest that BPA
exposure coupled with a HFCCD induces hepatosteatosis through ROS-induced CD36
overexpression, as well as hepatic lipid accumulation.

To summarize: BPA exposure in a high-fat-diet model increased intracellular ROS
production which, in turn, induced C/EBPα and CD36 overexpression to promote intracel-
lular free fatty acid uptake, liver damage, and caspase-3 activation for apoptosis; increased
α-SMA expression for steatohepatitis; and accelerated the fibrotic process (Figure 6). How-
ever, the detailed mechanism by which BPA induces ROS production to increase CD36
expression and free fatty acid accumulation requires further research.
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Figure 6. The proposed mechanism of BPA coupled with a high-fat diet in enhancing ROS-induced
hepatic lipid accumulation and liver fibrosis: BPA + HFCCD increases intracellular ROS production,
which induces the expression of CCAAT-enhancer-binding protein α (C/EBPα) and CD36, and
promotes free fatty acid uptake. BPA exposure aggravates HFCCD-induced liver damage, leading to
cleaved caspase-3 activation for apoptosis, steatohepatitis, and acceleration of the fibrotic process
(due to α-SMA overexpression). The figure was created using Biorender.

5. Conclusions

This study demonstrates that BPA exposure may increase ROS production and CD36
expression, which promotes intracellular free fatty acid uptake and leads to liver damage
and caspase-3 activation. The increased levels of α-SMA expression with BPA exposure
can potentially accelerate steatohepatitis and the fibrotic process. Therefore, it is necessary
for consumers to pay attention to the containers used in the storage of high-fat foods to
minimize the adverse health effects of BPA.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics10050208/s1, Figure S1: (a) Original unedited blot, ECL
images indicating SR-A1, SR-B1 and α-tubulin for representative Western blots used in Figure 4b
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of the manuscript. (b) Original unedited blot, ECL images indicating CD36 and α-tubulin for
representative Western blots used in Figure 4b of the manuscript; Figure S2: Original unedited blot,
ECL images indicating CD36, C/EBPα, CHOP and α-tubulin for representative Western blots used
in Figure 4c of the manuscript; Figure S3: (a) Original unedited blot, ECL images indicating CHOP
and α-tubulin for representative Western blots used in Figure 5b of the manuscript. (b) Original
unedited blot, ECL images indicating CD36 and β-actin for representative Western blots used in
Figure 5c of the manuscript. (c) Original unedited blot, ECL images indicatingα-SMA and α-tubulin
for representative Western blots used in Figure 5d of the manuscript. (d) Original unedited blot, ECL
images indicating CL-caspase 3 and α-tubulin for representative Western blots used in Figure 5d of
the manuscript.
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