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ABSTRACT 
 

It has been demonstrated that human exposure to polybrominated diphenyl ethers (PBDEs) might be associated with 
several adverse health effects. Dietary and microenvironmental sources are considered to be the main routes of PBDEs 
exposure. The study aimed to investigate PBDEs in residential indoor and outdoor air and further to assess the health risks 
in family members of different ages. Indoor and outdoor air samples from houses in residential areas were simultaneously 
collected for analysis of BDE-47, 99, 100, 153, 154, 183, 196, 197, 203, 206, 207, 208, and 209 by high-resolution gas 
chromatography/high-resolution mass spectrometry. PBDE concentrations were non-significantly higher indoors (81.1 pg/m3) 
than outdoors (42.7 pg/m3) (p = 0.513). For the outdoor air, the mean PBDE level was lower in air outside houses than in 
air from industrial and urban areas. Levels of Σ14PBDEs and BDE-209 in house indoor air were no higher in Taiwan than 
other countries. The daily intake of non-dietary PBDEs from house air and dust in Taiwan was highest in the toddlers (1–2 
years old; 8.22 ng/kg b.w./day) and lowest in the male adults (≥ 20 years old; 0.562 ng/kg b.w./day) among family 
members. For Taiwanese, the risks of non-cancer (hazard quotient: HQ) and cancer (cancer risk: R) with neurobehavioral 
effects of exposure to non-dietary PBDEs in the home environment were assessed to be lower than the critical values of 
1.00 and 1.00 × 10–6 for HQs and Rs, respectively. In conclusion, levels of indoor PBDEs and non-dietary daily intake 
were found to be low in home environments in Taiwan. This result suggests that PBDEs in the home environment are not 
harmful to family members from the newborn to the elderly if we only consider the neurobehavioral effects. 
 
Keywords: Polybrominated diphenyl ethers; Indoor air; House; Daily intake; Health risk. 
 
 
 
INTRODUCTION 
 

Staying indoors is associated with numerous negative 
effects and one of them is exposure to hazardous toxic 
substances in indoor air including polybrominated diphenyl 
ethers (PBDEs). PBDEs are a class of brominated fire 
retardants (BFRs) known to disrupt endocrine hormone 
functions. PBDE commercial formulations, namely 
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PentaBDEs, OctaBDEs, and DecaBDE, have been widely 
utilized as BFRs in consumer products such as consumer 
electronics (i.e., television sets), textiles, carpets, building 
materials, and upholstered furniture during the last two 
decades. Toxicological data was achieved on the US EPA 
Integrated Risk Information System (IRIS) showing that 
reference doses for chronic oral exposure (RfDs) on 
neurobehavioral effects were 0.0001 (Benchmark Dose level 
(BMDL): 0.35 mg/kg), 0.0001 (BMDL: 0.29 mg/kg), 0.0002 
(no-observe-adverse-effect level (NOAEL): 0.45 mg/kg) 
and 0.007 mg/kg/day (NOAEL: 2.22 mg/kg) in BDE-47, 99, 
153, and 209, respectively (US EPA, 2008). PBDEs have 
continuously raised the public's and public officials’ concern 
because of their ubiquity in the microenvironment and their 
association with several adverse health effects, including 
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disruption of thyroid and growth hormone homeostasis, 
neurodevelopment, menstruation, pregnancy, and semen 
quality (Chao et al., 2007; Chao et al., 2010; Lin et al., 2011; 
Shy et al., 2012; Chao et al., 2014a; Hsu et al., 2014). Air 
levels of PBDEs are often lower outdoors than indoors 
(Hazrati and Harrad, 2006). According to the Swedish report, 
many BFRs were frequently found in indoor, ventilation, and 
outdoor air samples and PBDE levels increasing as outdoor 
air samples were obtained in more urban areas than rural 
areas (Newton et al., 2015). In general, the higher PBDE 
concentrations in indoor air than outdoor air have been 
attributed to their extensive use in consumer products in 
the indoor environment (Wilford et al., 2004; Besis and 
Samara, 2012) and higher PBDE levels of gaseous and 
particulate indoors than outdoors have been attributed to 
the abundance of indoor sources of PBDEs emission, smaller 
space, restricted air exchange rates, and weaker air circulation 
systems. PBDEs are dispersed through the ventilation system 
or by natural convection (Besis and Samara, 2012; Björklund 
et al., 2012; Zhang et al., 2011). Although commercial 
products containing pentaBDEs and octaBDEs mixtures 
have been phased out in most countries since 2005, and 
decaBDE mixtures are only banned by the European Union, 
PBDEs are continuously released from existing consumer 
products into the indoor environment and will be for many 
years to come (Frederiksen et al., 2009). Different indoor 
environments have different airborne PBDE concentrations 
and different PBDEs emission characteristics. Several 
studies reported diverse air PBDE concentrations inside the 
passenger compartments of automobiles (Mandalakis et al., 
2008; Thuresson et al., 2012), in-flight airplane cabins (Allen 
et al., 2013), homes and offices (Zhang et al., 2011), houses, 
offices, apartments, day care centers (Thuresson et al., 
2012), and e-waste recycling plants (Guo et al., 2015). 

Health risk studies (Jones-Otazo et al., 2005; Toms et 
al., 2009; de Wit et al., 2012; Hearn et al., 2012) have 
found that human exposure to PBDEs is mainly from 
ingesting or inhaling indoor dust. Several reports have 
revealed a correlation between PBDEs adhering to house 
dust and PBDEs contaminating breast milk, maternal and 
cord blood, and hair (Wu et al., 2007; Frederiksen et al., 
2010; Kang et al., 2011). A Chinese study indicated that 
indoor PBDEs are released from the surface of consumer 
products into the air and accumulate in dust and air-
conditioner filters (Ni et al., 2011). Although current studies 
show that body PBDEs concentrations are not related to 
indoor air PBDE concentrations (possibly because of small 
sample size; Fromme et al., 2009; Toms et al., 2009), a 
pattern of non-dietary PBDEs exposure probably exists 
and the possible route of PBDE exposure is release from the 
surface of electronics and transfer to human bodies through 
accumulation of airborne PBDEs on indoor dust.  

In Taiwan, PBDE levels have been investigated in 
urban, suburban, industrial, and rural ambient air, house 
dust in residences, and the oceanic atmosphere near the 
island of Formosa (Wang et al., 2011; Lin et al., 2012; 
Chao et al., 2014b, c). A few environmental studies have 
focused on measurement of indoor PBDEs levels and the 
impact of PBDEs on human health in Taiwan. Our goal was 

to determine levels of PBDEs in the indoor and outdoor air 
of residences located in southern Taiwan. We used PBDE 
concentrations in house air in the present study and in 
house dust in our previous study (Chao et al., 2014b) to 
assess the non-dietary exposure of the adults, adolescents, 
children, and toddlers to PBDEs via indoor air inhalation 
and dust ingestion.  
 
METHODS 
 
Reagents and Chemicals 

The standard solutions of the 14 PBDE congeners 
(BDE-28, 47, 99, 100, 153, 154, 183, 196, 197, 203, 206, 
207, 208 and 209) were purchased from Cambridge 
Isotope Laboratories (Andover, MA, USA) and the 8 13C-
labeled PBDEs (BDE-28, 47, 99, 153, 183, 197, 207, and 
209) were obtained from Wellington Laboratories (Guelph, 
Canada). Sodium sulfate, alumina oxide, potassium oxalate, 
and silica gel of the highest grade were from Merck 
(Darmstadt, Germany). 

 
Samples Collection, Extraction, and Cleanup 

Samples in the present study were obtained from 
residential areas in southern Taiwan between October 2012 
and March 2013. One was in Kaohsiung City and two were 
in Pingtung County. Indoor air in the houses and ambient 
air outside the houses were simultaneously sampled by two 
high-volume air samplers and, following US EPA Reference 
Method TO9A, each sample was collected for approximately 
40 h (1–2 days, ~600 m3) using model PS-1 air samplers 
(Graseby Andersen Inc., Smyrna, GA) each equipped with 
a quartz fiber filter followed by a glass cartridge containing 
polyurethane foam (PUF) to capture the particulates and 
gas in each sample. The quartz fiber filter and PUF of each 
air sample were combined before the chemical analysis of 
the 14 PBDEs. 

The sampling, extraction, and cleanup procedures for air 
samples of PBDEs used in previous studies were followed 
with minor modification (Wang et al., 2011; Chao et al., 
2014c). In brief, before the air sampling, pre-labelled 
isotopes and identifiable surrogate standards were spiked 
in the cartridges to evaluate the collection efficiency of the 
sampling process. After air samples were collected, internal 
standards were spiked into the samples, well mixed with 
toluene, and then extracted with toluene for 24 h in a Soxhlet 
extractor to monitor the extraction and cleanup process. The 
extracts were concentrated, treated with concentrated sulfuric 
acid, and passed through a multicolumn system of acid 
silica, alumina, and activated carbon columns. The eluate 
was collected, concentrated to near dryness using a nitrogen 
stream, and then transferred to a vial. A total of 50 µL of 
13C-labeled BDE-139 was added to each eluate as an 
internal recovery standard after the clean-up and prior to 
injection to minimize the possibility of loss. The final extract 
was reduced in volume to 0.2 mL under a stream of nitrogen. 

 
PBDEs Analysis 

The sample extracts were analyzed by high-resolution 
gas chromatography/high-resolution mass spectrometry 
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(Hewlett-Packard 6970 Series gas/Micromass Autospec 
Ultima) using a positive electron impact (EI+) source in 
the selected ion monitoring (SIM) mode with a resolving 
power of 10,000. The GC analysis of PBDEs was performed 
on a DB-5HT column (L = 15 m, i.d. = 0.25 mm, film 
thickness = 0.1 µm) (J&W Scientific, Folsom, CA) in splitless 
mode at 280°C with constant helium flow of 1 mL/min. 
The GC temperature program consisted of 100°C for 4 
min, increase to 200°C at a rate of 40 °C/min between 100 
and 200°C, 200°C for 3.5 min, increase to 325°C at a rate 
of 10 °C/min, and 325°C for 2.5 min in the final step. 

The electron energy and source temperature were specified 
at 35 eV and 250°C, respectively. The two most abundant 
isotope masses were measured for each component. 
Quantification was performed using internal/external standard 
mixtures via the isotope-dilution method. The US EPA 
Method 1614A of analytical quality assurance and quality 
control (QA/QC) was followed. Prior to air sampling, PUF 
cartridges were spiked with PBDE surrogate standards pre-
labeled with isotopes to obtain the recoveries of PBDEs 
surrogate standards within 82–121% of acceptable QA/QC 
limits (i.e., 70–130%). The limits of detection (LODs) and 
quantification (LOQs) were defined as the amount at 
which the signal-to-noise (S/N) ratios were higher than 3 
and 10, respectively. The LODs for the 13 PBDE congeners 
(BDE-28 to -208) ranged from 0.288 to 49.0 pg/g and the 
LOD of BDE-209 was 314 pg/g. The analysis of the PBDE 
labeled internal, precision and recovery (PAR), and surrogate 
standards all met the relevant standards. Laboratory blanks 
were analyzed for each batch of 10–12 samples. The total 
amounts of PBDEs in the field and laboratory blanks were 
extremely low (mostly negligible) compared with those of 
the real samples. The isotopic ratios of at least two 
characteristic ions for each sample were consistent with 
theoretical values to within a deviation of 15%. Calibration 
mixtures with isotopically labeled internal standards were 
tested in the quantification of the target compounds. 
 
Health Assessments 

Non-dietary health assessments of PBDEs in Taiwanese 
houses including daily intake and neurobehavioral effects 
of non-cancer risk (Hazard quotient: HQ), and cancer risk 
(neurobehavioral effect) (R) assessments were carried out 
in the present study. Two non-dietary PBDEs exposure 
routes, such as house dust ingestion and airborne inhalation, 
were considered. Health risks were assessed with the Monte 
Carlo simulation. Airborne PBDE levels from the present 
study and house dust PBDE levels from our previous study 
(Chao et al., 2014b) were used to calculate daily non-dietary 
PBDEs intakes for toddlers, preschool and elementary school 
children, adolescents, and adults living in Taiwanese 
houses. Daily intakes of non-dietary PBDEs for Taiwanese 
were calculated using the equation of DIindoor air inhalation = 
Cindoor air × IRinhalation rate × 0.95absorption rate × IEFindoor exposure 

fraction/BWbody weight and the equation DIdust ingestion = Cindoor dust 
× IRdust ingestion rate × 0.95absorption rate × IEFindoor exposure fraction/ 
BWbody weight. Inhalation rates (IRinhalation rate) for Taiwanese 
were obtained from the report “Compilation of Exposure 
Factors” (Taiwanese DOH, 2008), and house dust ingestion 

rates (IRdust ingestion rate) were obtained from the “Child-
specific Exposure Factors Handbook” (US EPA, 2008). 
The absorption rate of PBDEs in human intestinal tract 
was set at 0.95. Indoor exposure fraction (IEF) was from 
the “Compilation of Exposure Factors” (Taiwanese DOH, 
2008) for Taiwanese adults and “Child-specific Exposure 
Factors Handbook” for Taiwanese infants to adolescents 
(US EPA, 2008). Average body weights of different age 
groups in Taiwan were according to the report on the 
Nutrition and Health Survey in Taiwan (NAHSIT) produced 
by the Health Promotion Administration of the Ministry of 
Health and Welfare (MOHW) from 2005 to 2008 (National 
Health Research Institute, 2015). Oral reference doses 
(RfDs) of BDE-47, 99, 153, and 209 (0.0001, 0.0001, 
0.0002, and 0.007 mg/Kg/day, respectively) to evaluate 
their neurobehavioral effects and non-cancer risks (HQs) 
were provided by the US EPA IRIS (US EPA, 2008). The 
equation of HQ = DIdust ingestion × EF × ED/(ATnc × 365) from a 
previous study (Lim et al., 2014) was used to estimate non-
cancer risk in Taiwan, where DI, EF, ED, and ATnc are daily 
intake, exposure frequency per year (day/year), exposure 
duration (year), and average time for non-cancer effects 
during exposure duration (year), respectively. Quantitative 
estimates of carcinogenic risk with neurobehavioral effects 
via oral ingestion of BDE-209 (oral slope factor = 0.0007 
per mg/Kg/day) was also obtained from IRIS (US EPA, 
2008). We calculated cancer risk (R) in the Taiwanese 
population using the equation R = CDI (chronic daily 
intake) × SF (slope factor). CDI was defined as Cindoor dust × 
IRdust ingestion rate × 0.95absorption rate × IEFindoor exposure fraction × EF × 
ED/(BWbody weight × AT × 365), where AT was the average 
lifespan in Taiwan in 2012 (76.43 and 82.82 years for men 
and women, respectively) obtained from the Nutrition and 
Health Survey in Taiwan (NAHSIT).  
 
Statistical Analysis 

Measurements of airborne PBDEs below the limits of 
detection (LODs) were set to zero. The difference in level 
of airborne PBDE between indoor and outdoor samples 
was examined by the Mann-Whitney U test. Differences 
were considered to be significant when the p value was less 
than 0.05 or at the 95% confidence level. The Statistical 
Product and Service Solutions (SPSS) software, version 
12.0, was used in the present study. 

 
RESULTS AND DISCUSSION 
 
Levels of Airborne PBDEs inside and outside Residential 
Homes 

Table 1 shows airborne PBDE concentrations inside and 
outside residential homes in Taiwan (n = 3). BDE-209 was 
the predominant congener among 14 BDE congeners and 
accounted for 70.0% of the total in both indoor and 
outdoor air. Although the mean Σ14PBDE and BDE-209 
concentrations were higher indoors than outdoors, the 
difference was not significant (p = 0.513 for Mann-Whitney 
U test and p = 0.254 for paired samples t test) probably due 
to the small sample size. Concentrations of the 14 BDE 
congeners did not differ between indoor and outdoor air 
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using the nonparametric Mann-Whitney U test. Using 
parametric tests (paired samples t test with 3000 bootstrap 
samples), concentration differences between indoor and 
outdoor air were only significant for BDE-153 (p < 0.001) 
and BDE-203 (p < 0.001), with higher levels outdoors. Fig. 1 
shows the concentration of BDE homologues of different 
bromine number. As expected, airborne Σ14PBDE levels 
were higher indoors than outdoors, particularly for BDE-
209. Bradman et al., (2014) found a possible correlation of 
higher indoor air levels of various BFRs with volatilization 
of BFRs or re-suspension of contaminated indoor dust.  

The ambient outdoor air levels of PBDEs in residential 
neighborhoods were higher in the present study than in 
previous studies in a Pingtung rural area (15.9 pg/m3) (Chao 
et al., 2014c) and Kaohsiung urban area (35.3 pg/m3) 
(Wang et al., 2011), but lower than in two industrial areas 
of Kaohsiung (area of heavy industry and steel production 
[165 pg/m3] and area of metals production [93.3 pg/m3]) 
(Wang et al., 2011) and three areas of Tainan (industrial: 
58.5, urban: 88, rural: 55.4 pg/Nm3) (Lin et al., 2012). Our 
value had the similar magnitude with ambient levels of 
PBDEs in the urban areas, but lower than those in the 
industrial areas of Florence, Italy (Cincinelli1 et al., 2014). 
Compared with the other brominated POPs like 
polybrominated biphenyls (PBBs) and polybrominated 
dibenzo-p-dioxins and furans (PCDD/Fs), PBDEs are the most 
abundant pollutants in the flue gas and outdoor environment 
(Chao et al., 2014c; Wang et al., 2014). Although PBDEs 
have the structural similarity with PCBs and PCDD/Fs, 
their emission sources and transportation routes are quite 
different. Discharge from vehicles or industrial flue gases is 
directly associated with PCB and dioxin emission, but higher 
PBDE concentrations are mainly from the electric equipments 
and low PBDE levels are associated with emission from PUF 
furniture and carpets (Zhang et al., 2011; Zhou et al., 2014). 

 
Current Levels of Airborne PBDEs in Indoor 
Microenvironments 

Table 2 shows airborne PBDE concentrations in residential 
houses, apartments, offices, daycare centers, cars, public 
facilities, and schools according to currently published and 
the present data. The levels of airborne PBDEs in residences 
are lower in Taiwan than in Sweden (Thuresson et al., 2012), 
Vietnam (in houses near backyard electronic (e)-waste 
recycling sites; Tue et al., 2013), Korea (Lim et al., 2014), 
and the United States (Allen et al., 2007; Bennett et al., 
2014), and slightly higher in Taiwan than Japan (Takigami 
et al., 2009), United Kingdom (Harrad et al., 2006), Sweden 
(in apartments; Thuresson et al., 2012), Vietnam (in houses 
in suburban and rural areas; Tue et al., 2013), and Australia 
(Toms et al., 2009). Compared to their levels in other 
microenvironments listed in Table 2, PBDE levels in the 
houses or apartments (except Vietnamese houses near 
backyard e-waste recycling sites) were lower. Although 
several studies did not detect BDE-209 (Harrad et al., 
2006; Zhang et al., 2011; Watkins et al., 2013; Bennett et 
al., 2014), BDE-209 was at least compositing of 50% in 
the environmental samples and human specimens (Chao et 
al., 2014a). BDE-209 was the predominant BDE congener
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Fig. 1. The distribution of air-sample PBDE homologues indoors and outdoors. 

 

in indoor air of various microenvironments except Korean 
elementary schools where the concentration of airborne 
BDE-47 was highest among 8 airborne BDE congeners 
(Lim et al., 2014). Indoor air levels of PBDEs were lower 
in residences including houses and apartments than in 
other microenvironments (Table 2). This may be due to 
compliance with current restrictions placed by the Restriction 
of Hazardous Substances Directive 2002/95/EC (RoHS) on 
the use of PBDEs in BFR building materials for homes.  
  
Non-Dietary PBDEs Daily Intake in Taiwan 

Table 3 estimates the daily intake of non-dietary PBDEs 
by age groups of family members via house dust and 
indoor air in their living quarters. The estimates for house 
dust PBDE were taken from our previous report (Chao et 
al., 2014b). In Table 3, the PBDE daily intake was highest 
(11,800 pg/Kg b.w./day or 162 ng/day) in toddlers (1–2 
years old) and lowest in adult males (males: 808 pg/Kg 
b.w./day or 55.8 ng/day, females: 1050 pg/Kg b.w./day or 
58.8 ng/day). In all the age groups, approximately 90% of 
exposure to PBDEs was non-dietary from house dust and 
BDE-209 was major. According to previous studies (Zhang 
et al., 2011; Bennett et al., 2014; Bradman et al., 2014; 
Król et al., 2014), PBDE levels in indoor air are weakly or 
slightly correlated with those in indoor dust. Although we 
cannot show correlations and the significances of differences 
in PBDE levels between house dust and indoor air in the 
present study, indoor air and dust levels of PBDEs can be 
used to evaluate daily intakes of non-dietary PBDEs for 
different age groups. House dust is the main source of non-
dietary PBDEs exposure for humans especially toddlers 
and young children in residential indoor environments, and 
may be associated with several adverse health effects (Chao 
et al., 2014a). Several reports propose that the indoor 
home environment is a major source of exposure to PBDEs 
in humans, especially the very young who spend a lot of 
time at home, play on the floor, and have frequent hand-to-
mouth contact (Stapleton et al., 2008; Stapleton et al., 2012; 
Buttke et al., 2013). Lim et al. (2014) indicated that the 
home among indoor environments was recognized as the 

largest contributor to daily exposure and health risk among 
Korean school children (daily dose: 80%, 16%, 3%, and 
1% for home, elementary school, private academy, and 
public facility, respectively). In addition to dietary PBDE 
daily intake (67.95 ng/day for Taiwanese adults) (Chen et 
al., 2012), non-dietary PBDE daily intake (adult males: 39.2 
ng/day, adult females: 41.2 ng/day) estimated in the present 
study is also an important source of PBDEs exposure in 
Taiwan. 

The estimated mean daily intake of indoor PBDEs by 
different age groups (infants, toddlers, children, teenagers, 
and adults) in the present study was comparable to those in 
studies from Heilongjiang, China (Zhu et al., 2013), all 
China (Zhu et al., 2015), and Busan, Korea (for adults and 
toddlers; Lee et al., 2013); lower than the daily intake in 
studies from southern China (for house dust in homes near 
e-waste recycling sites; Zheng et al., 2015) and northern 
Vietnam (Tue et al., 2013), but higher than the daily intake 
in a study from northern Poland (for adults and toddlers; 
Król et al., 2014). The primary sources of human exposure 
to PBDEs appear to be dietary, dust, air, handwipes, 
handkerchiefs, and direct skin contact. Bennett’s (Bennett 
et al., 2014) and Lim’s (Lim et al., 2014) studies found 
that PBDE levels in indoor dust are significantly correlated 
with levels in other environmental media. House dust is 
convenient to collect, easy to collect in large amounts, and 
PBDEs level in house dust is well correlated with that in 
other indoor media. Moreover, risk is easier to calculate 
from house dust data than from house indoor air and other 
environmental media data. House dust may be a good 
indicator of non-dietary PBDE exposure indoors. 

 
Assessment of the Risks of Non-Dietary PBDE Exposure 

According to the toxicological assessment data from the 
IRIS of the US EPA, chronic oral exposure to reference 
doses (RfDs) associated with neurobehavioral effects were 
only shown for four PBDE congeners (BDE-47, 99, 153, 
and 209). In Fig. 2, the HQs for human exposure to BDE-
47, 99, 153, and 209 were calculated based on assumption 
of individual PBDE concentrations in house dust, house
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Table 3. PBDEs daily intake by Taiwanese adults and toddlers via inhalation and dust ingestion in the residential 
environment (pg/Kg b.w./day). 

PBDEs 
Indoor air inhalation a Indoor dust ingestion b Non-dietary intake c

Mean SD Mean SD Mean SD 
Male adults (≥ 20 yr) 
Σ14PBDEs 
BDE-209 

Female adults (≥ 20 yr) 
Σ14PBDEs 
BDE-209 

Male adolescents (15–19 yr) 
Σ14PBDEs 
BDE-209 

Female adolescents (15–19 yr) 
Σ14PBDEs 
BDE-209 

Male adolescents (12–14 yr) 
Σ14PBDEs 
BDE-209 

Female adolescents (12–14 yr) 
Σ14PBDEs 
BDE-209 

Elementary school children (8–9 yr) 
Σ14PBDEs 
BDE-209 

Preschool children (5–6 yr) 
Σ14PBDEs 
BDE-209 

Toddlers (1–2 yr) 
Σ14PBDEs 
BDE-209 

 
10.7 
7.49 

 
9.51 
6.66 

 
14.4 
10.1 

 
11.3 
7.89 

 
14.1 
9.91 

 
11.7 
8.20 

 
26.3 
18.4 

 
33.1 
23.2 

 
41.5 
29.1 

 
9.34 
5.95 

 
8.42 
5.37 

 
11.7 
7.44 

 
9.98 
6.36 

 
9.52 
6.07 

 
10.4 
6.61 

 
23.3 
14.8 

 
29.3 
18.7 

 
36.8 
23.5 

 
557 
238 

 
727 
310 

 
1370 
586 

 
1670 
713 

 
1750 
747 

 
1985 
848 

 
2800 
1200 

 
4280 
1830 

 
8180 
3490 

 
798 
452 

 
1040 
589 

 
1970 
1110 

 
2390 
1350 

 
2510 
1420 

 
2840 
1609 

 
4010 
2270 

 
6130 
3470 

 
11700 
6630 

 
568 
245 

 
736 
317 

 
1387 
596 

 
1680 
720 

 
1760 
757 

 
1200 
856 

 
2820 
1210 

 
4310 
1850 

 
8220 
3520 

 
808 
458 

 
1050 
595 

 
1980 
1120 

 
2400 
1360 

 
2520 
1430 

 
2850 
1616 

 
4030 
2280 

 
6160 
3480 

 
11800 
6650 

a PBDEs intake via indoor inhalation was based on Hearn et al. (2012) with the equation of DIindoor air inhalation = Cindoor air × 
IRinhalation rate × 0.95absorption rate × IEFindoor exposure fraction/BWbody weight. 
b PBDE levels in house dust were from our previous report (Chao et al., 2014b). PBDEs intake via indoor dust digestion 
was modified from the Greek study (Besis et al., 2014) with the equation of DIdust ingestion = Cindoor dust × IRingestion rate × 
0.95absorption rate × IEFindoor exposure fraction/BWbody weight. 
c Non-dietary intake was the sum of indoor air inhalation and indoor dust ingestion. 

 

dust daily intake, exposure time, body weight, and average 
life time and were highest between ages 1 and 2 years and 
the lowest at age ≥ 20 years. All HQs were lower than the 
critical value of 1.00, indicating all age groups did not 
have a risk for neurobehavioral effects in the present study. 
The risks (HQs) of neurobehavioral effects from residential 
indoor air inhalation were not calculated for two reasons. 
One was that reference concentrations for chronic inhalation 
exposure (RfC) have not been estimated from 2008 to the 
present by US EPA and are still under review. The other 
was that the percentage of non-dietary PBDE daily intake 
via indoor inhalation is low. Our HQs were consistent with 
those reported in previous reports (Lim et al., 2014; Li et 
al., 2015; Zhu et al., 2015), i.e., below 1.00, indicating that 
PBDEs in the indoor environment are not harmful to 
human health. 

For the BDE-209 which is the predominant PBDE 
congener in the indoor environment and human bodies, life-
time cancer risks (Rs) with neurobehavioral effects in Taiwan 
were assessed as 3.65 × 10–10 for men and 4.04 × 10–10 for 

women. Our R values were below the critical value of 1.00 
× 10–6 with statistical significance and indicated that PBDEs 
in residential environments will not cause cancer associated 
with neurobehavioral effects in Taiwan. Li et al. (2015) 
revealed that potential health risk of PBDEs in the office 
environment is not associated with life time cancer risk (as 
suggested by extremely low Rs from 1.34 × 10–22 to 7.16 × 
10–22). After assessing health effects for the family members 
in the present study, the current levels of PBDEs in house 
dust and indoor air are extremely lower compared to the 
critical values. On the basis of our findings, we announced 
that PBDEs in indoor environment did not cause the negative 
impact on the family members if only non-cancer and 
cancer effects on neurological behavior were considered. 

 
CONCLUSIONS 

 
Non-dietary exposure to PBDEs and airborne levels of 

PBDEs are greater inside than outside the home. Among 
age groups, the toddlers had the highest daily intake and non-
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cancer and cancer risks related with neurobehavioral effects 
from non-dietary PBDEs exposure in home environment. The 
estimated values for the toddlers were distinctly below the 
reference dose and threshold values for risk of cancer and 
non-cancer effects with neurobehavioral disorders, indicating 
that PBDEs levels inside houses are not harmful to family 
members. 
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